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Abstract— An increasing number of robotic manipulation
tasks now use optical tactile sensors to provide tactile feedback,
making tactile servo control a crucial aspect of robotic opera-
tions. This paper presents a rapid tactile transfer framework
(RTTF) that achieves optical-tactile image sim2real transfer
and robust tactile servo control using limited paired data. The
sim2real aspect of RTTF employs a semi-supervised approach,
beginning with pretraining the latent space representations of
tactile images and subsequently mapping different tactile image
domains to a shared latent space within a simulated tactile
image domain. This latent space, combined with the proprio-
ceptive information of the robotic arm, is then integrated into a
privileged learning framework for policy training, which results
in a deployable tactile control policy. Our results demonstrate
the robustness of the proposed framework in achieving task
objectives across different tactile sensors with varying physical
parameters. Furthermore, manipulators equipped with tactile
sensors, allow for rapid training and deployment for diverse
contact-rich tasks, including object pushing and surface fol-
lowing.

I. INTRODUCTION

In robot-object interaction, tactile feedback provides the
robot with the ability to perceive the physical properties of
objects, enabling more effective control and manipulation.
Many robots now incorporate tactile feedback from optical
tactile sensors and use learning-based approaches to achieve
tactile servo control. Training tactile servo control policies in
simulation environments can avoid excessive wear and tear
when tactile sensors come into contact with objects, so many
studies have developed tactile simulation environments [1]–
[4]. However, achieving effective sim-to-real policy transfer
for tactile servo control still poses several key challenges.
Some research uses image translation methods to bridge the
gap between simulated and real tactile images [5]–[7], but
these techniques typically require a large amount of paired
data for training and can be difficult to train effectively due
to the high resolution of tactile images from optical sensors.
End-to-end tactile servo control based on reinforcement
learning is often considered a more effective method [8]–
[10]. Therefore, how to obtain a simple and adaptive policy
model becomes crucial. Furthermore, the wide variety of
optical tactile sensors presents a challenge in developing
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tactile control policy models that can adapt to different sensor
types without requiring additional training.

In this study, as shown in Fig. 1, we proposed a rapid
tactile transfer framework (RTTF) that enables rapid transfer
and deployment when replacing optical-based tactile sensors
in the tactile control system, even when the sensors are
entirely different except for similar geometric structures.
Additionally, RTTF supports zero-shot expansion to other
tasks.

Our contributions can be summarized as follows: 1) We
have addressed the transfer problem of changing various
optical-based tactile sensors and performing different tasks
within a tactile control system. 2) We introduce RTTF,
which exploits implicit spatiotemporal tactile information to
enable control policy transfer and adaptation across different
sensors, tasks, and physical environments. 3) Our framework
significantly reduces the data dependency of tactile control
policies during sim2real and improves robustness.

Our framework is notable for its ease of deployment and
low implementation cost. For a homemade tactile sensor,
transferring to the same task requires only a few minutes of
data collection. Moreover, both transfer and policy models
can be trained in about 1 hour on a consumer single GPU.

The manuscript is structured as follows. In Sec. II, the
related work is first reviewed and then the proposed frame-
work is described in Sec. III. This includes the Tactile
Latent Space Mapping (TLSM) approach for sim-to-real in
Sec. III-A and the privileged learning for policy training in
Sec. III-B. Sec. IV presents the experiments, including the
hardware employment, the simulation results, and the results
of employing the learned policy on the real-world system.
Finally, Sec. V concludes our work.

II. RELATED WORK

A. Tactile Sim2Real

The sim2real problem for optical tactile sensors [11]–[15]
is often regarded as an image translation problem from the
simulation domain to the real domain. This task commonly
employs generative models like Generative Adversarial Net-
work (GAN) [16] techniques and diffusion models [17]
for image translation, which are also frequently applied to
address domain adaptation challenges in tactile sensing [5]–
[7]. Methods based on GANs or Diffusion Models typi-
cally involve training a generative model using a substantial
amount of paired tactile images. Due to the instability of
the generative model, the required volume of paired data
typically reaches a scale of 1000× to achieve precise recon-
struction of tactile images. However, this approach does not



Fig. 1. RTTF is divided into four parts. First, collect paired and unpaired tactile data. Second, the tactile features of different domains are mapped to a
unified simulation hidden space through Tactile Latent Space Mapping (TLSM) training. Then, the tactile feedback control policy is obtained using the
unified hidden space features through reinforcement learning training. Finally, the policy model is directly deployed through mapping on the actual system.

take into account the data cost and information redundancy
inherent in tactile images themselves.

Self-supervised representation learning can reduce data
redundancy while capturing spatial features of tactile images.
Some studies [18], [19] suggest that obtaining the implicit
representation of tactile information first and then deriving
policies from this implicit representation is a more data-
efficient approach. However, policies acquired through tactile
representation learning cannot be directly deployed when
there is a change in sensor types, necessitating retraining.
In addition, the low-dimensional tactile latent space obtained
by the self-supervised method also leads to information loss.

The semi-supervised approach LSM (Latent Space Map-
ping) can map different latent space representations to the
same latent space. Some studies [20], [21] have successfully
applied LSM to image translation. We have designed TLSM
(Tactile Latent Space Mapping) in RTTF that includes tactile
data collection, model structure and model training. TLSM
enables us to train a mapping model with minimal tactile
data on top of the self-supervised pre-trained model, mapping
all similarly structured self-made tactile sensor domains to
a common simulated domain. As a result, we can directly
apply policies from the simulated domain without additional
training.

B. Tactile Control Policy

Tactile servo control relies on valuable feedback from
optical tactile sensors. In certain approaches, a supervised
learning process is used to train a feature extraction network
[22]–[24]. Subsequently, the extracted information, such as
contact depth and contact pose, is incorporated into ei-
ther model-based or model-free servo control methods. For
model-free servo control methods with greater generalization
capabilities, reinforcement learning has gained attention due
to its emphasis on interaction with the environment. The
works in [8]–[10] have made progress in tasks such as typing,

grasping, and pushing using reinforcement learning methods
in tactile servo control. Indeed, the continuous nature of
interactions with objects poses challenges for reinforcement
learning, as it introduces Partially Observable Markov De-
cision Process (POMDP) problems [25]. This can make it
challenging to train tactile feedback control policies using
reinforcement learning methods.

To address these challenges, we drew inspiration from
existing work [26]–[28] and integrated temporal and spatial
latent features of tactile feedback through a teacher-student
framework in RTTF. This integration allows our decision-
maker to make decisions based on spatiotemporal features
while retaining the ability for rapid policy transfer. Compared
to other methods, RTTF enhances the policies’ generalization
and robustness, allowing the same pre-trained policy to be
applied across tactile sensors with diverse physical attributes
and various interacted objects.

III. THE PROPOSED APPROACH

We use the semi-supervised learning approach to map
images from real optical tactile sensors to the latent space
of simulated tactile images. To achieve this, we initially
employed VAE (Variational Autoencoder) to learn the latent
space representations of various tactile sensor domains. Sub-
sequently, we use the method of LSM to learn the mapping
between these latent spaces. Additionally, by having the
latent space representation of the simulated image domain,
we combine the latent space representation with the priv-
ileged learning framework to train a tactile servo policy
within the simulated environment. This ultimately leads to
the creation of the tactile servo controller, as illustrated in
Fig. 2. In this controller, we map the real tactile domain
to the latent space of the simulated domain and apply the
tactile servoing policy. RTTF only requires a cost-effective
data collection process. Through the methods of latent space
mapping and teacher-student learning, we obtain a struc-



Fig. 2. The workflow of tactile feedback controller after training in RTTF.
At each time step k, the controller receives the pose of the robotic arm’s end-
effector, and in some tasks, target coordinate information is also included.
The controller also receives latent space representations of both simulation
and real tactile features. These features are combined into a single feature
vector, denoted as o(k). The feature vector sequence of the previous T
frames is also considered as input for the decision network to predict
the mixture density model at time k. Finally, the mixture density model
is sampled, and the output is mapped to specific tasks to determine the
movement that should be taken. The total inference time only takes about
10ms in a single CPU.

turally concise and effective controller. Simultaneously, our
framework achieves temporal-spatial signal extraction for
tactile perception, decision-making, and adaptability. Next,
we will introduce how all our networks are developed.

A. Tactile Latent Space Mapping

First, we outline the preprocessing of the tactile data and
the TLSM method. We implement and optimize the networks
using PyTorch.

1) Preprocessing: We collected unpaired data with a data
size of 1000×, which is often employed in methods that
require paired or labeled data. The unpaired data consisted
of tactile images for all possible contact situations in all the
tasks we chose, including different contact depths, contact
angles, contact locations, and contact surface shapes. The
paired data should aim to encompass all possible contact
scenarios related to the corresponding task. We then selected
the paired data based on the specific task acquisition; for the
push task, we used 10% of the unpaired data to pair with the
simulation data, and for the surface-following task, we used
40% of the unpaired data to pair with the simulation data.
This data volume can be further reduced depending on the
quality of the paired data.

Our data pairing process is to synchronize the tactile
sensors in the real and simulated environments to maintain
roughly the same angle to the contact surface, make a
shallow-to-depth contact, save the tactile images from this
process, and then change to another angle. The pairing
process for a tactile sensor takes only 1 to 2 minutes, but
each different tactile sensor requires the same data collection
procedure.

The end of the tactile sensor is made of soft material
with low light transmission, which is largely unaffected by

light and occlusion, and the inner texture is relatively simple.
Therefore, we believe that a greyscale image using a single
channel of 128 × 128 pixels is sufficient to represent the
tactile features. While binary images have more distinctive
features, they also suffer from more information loss, and we
show in the experimental section the impact of tactile binary
features and tactile greyscale features on our study.

For unpaired data in real-world scenarios, we denote it
as Xreal and paired data as X̂real . In simulated scenarios,
unpaired data is denoted as Xsim, and paired data as X̂sim.

Fig. 3. The framework of TLSM. We begin by training VAEreal and
VAEsim through unsupervised learning using unlabeled tactile images. The
Real Encoder’s and Sim Decoder’s parameters are fixed during this training
phase. Next, a mapper model is obtained through supervised adversarial
training using a small set of paired tactile images. Finally, in the real-world
setting, we use a Real Encoder and Mapper to process the tactile images.

2) Tactile Latent Space Learning: Variational self-
encoder contains two neural networks: An encoder and a
decoder. They all consist of a four-layer CNN structure akin
to the posenet [29] (the decoder employs deconvolutional
layers). We use a pair of variational self-encoder networks
VAEsim and VAEreal , which contains encoders Esim, Ereal and
decoders Gsim, Greal . Given a data sample xsim ∈ Xsim and its
encoded representation zsim, the loss function for this stage
can be represented as follows:

L VAE
sim =−Eq(zsim |xsim ) [log p(xsim | zsim )]

+KL(q(zsim | xsim )∥p(zsim )) , (1)

where p represents the probability distribution of the data,
q is an approximation of p, and KL represents the KL
divergence. Similarly, as (1), we can get the loss L VAE

real in
the same way. After training the VAEsim and VAEreal , we
represent the data as latent codes zsim and zreal .

3) Tactile Latent Space Mapping: We then construct a
four-layer MLP (Multilayer Perceptron) network Freal2sim to
achieve TLSM from zreal to zsim. To train this mapping
network Freal2sim, we adopt the VAE-GAN framework and
use paired data X̂sim and X̂real . A GAN also contains two



neural networks: a generator G and a discriminator D. The
mapping network Freal2sim acts as a generator G, mapping
the latent space of one type of tactile image to the latent
space of another type of tactile image. Given a data sample
x̂real ∈ X̂real , we obtain the encoded result ẑreal by employing
the Encoder Ereal , i.e., ẑreal = Ereal(x̂real). Then the encoded
result ẑreal is mapped to ẑ f akesim through the mapper Freal2sim.
The discriminator D is used to distinguish between the
latent space vectors encoded from real tactile images and
those encoded from simulated tactile images. D outputs the
probability that a tactile image originates from the real or
simulated domain.

During the training process, the parameters of Freal2sim
and D are updated iteratively by optimizing distinct loss
functions alternatively. The generator’s loss function consists
of two components: the adversarial loss LG and the latent
space mapping loss LF , where LF penalizes the deviation
between the mapped latent codes ẑ f akesim and ẑsim using the
L1 loss, while LG aims to make the mapping result from
the real latent space to the simulated latent space more
similar in representational form to the original simulated
latent space. We represent the weight of the loss function LF
as a hyperparameter λ f , and the loss functions are written
as follows:

LFreal2sim = LG +λ f LF (2a)
LG = E[log(1−D(ẑ f akesim))] (2b)
LF = ∥F(ẑreal)− ẑsim∥1. (2c)

The loss function of the discriminator is written as:

LD = E[log(D(ẑsim))]+E[log(1−D(ẑ f akesim))]. (3)

The mapped simulated image can be obtained through the
simulated decoder, and this process can be described as
x̂ f akesim = Gsim(Freal2sim(Ereal(x̂real))).

After the TLSM training procedure, the tactile feedback
images from the natural environment will be encoded by
Ereal . Then, the latent code will be mapped to the simulation
domain by Freal2sim, which enables us to train the control
policy directly in the simulation environment. Moreover,
this implies that the feedback images from any structurally
similar tactile sensors can be mapped to the same simulated
domain through the TLSM training process without being
limited to a specific simulation environment.

B. Learning Tactile Control Policies

Reinforcement learning (RL) involves agents interacting
with the environment through actions to find optimal policies
guided by reward signals. The problem aligns with a partially
observable Markov decision process (POMDP). At time step
k, the agent relies on the observation o(k) to approximate
the previous state S(k − 1) and current action a(k), given
by S(k) ≈ o(S(k− 1),a(k)). In the simulation, exact object
attributes are accessible, allowing precise state determination
S(k) = o′(k) and obtaining an expert policy πe through RL.
In real-world environments, the privileged information is
unavailable. After imitating the expert πe, the student policy

πs employs temporal non-privileged information o(k− (T −
1)),o(k − (T − 2)), ...,o(k)(where T represents the size of
time window) to estimate implicit dynamic models, thus
predicting the actions a(k) to be executed. In the following
section, we give the details of the environment setup, expert,
and student policies (refer to Tactile-Gym’s documentation
[1] for environment specifications).

1) Environment Setup: The environment setup consists
of action space, observation space, and reward.
Action Space: The action space is defined as the six-
dimensional linear and angular velocities of the robotic arm’s
end effector.
Observation Space: Let ot(k) represent the TCP coordinates
of the robotic arm at time step k, zsim(k) denotes the latent
space of tactile images, og(k) stands for the target informa-
tion, and op(k) signifies the privileged information. The priv-
ileged information encompasses all known information in the
simulation environment, including the positions, velocities,
friction forces, and masses of objects in the environment.
The fully observed measurement o′(k) and non-privileged
observation o(k) are represented as follows:

o′(k) =
(
ot(k),zsim(k),og(k),op(k)

)
(4a)

o(k) =
(
ot(k),zsim(k),og(k)

)
. (4b)

Reward: The Tactile-Gym environment provides different
reward functions based on different tasks for environmental
rewards. We did not modify any formulas or hyperparameters
on top of this foundation.

2) Expert Policy: As shown in Fig. 4, to train the policy
πe, we employ one of the off-policy reinforcement learning
methods, Truncated Quantile Critics (TQC) [30], which can
control the overestimation bias in the critic’s value estimation
by using distributional critics. Given that the total number of
time steps taken from the initiation to the completion of a
task is Tend , the current time step is k, and the current expert
action is ae(k), the optimized policy πe is achieved through
the following approach:

π
e∗ = argmax

πe
E

(
Tend

∑
k=0

γ
kRπe(o′(k),ae(k))

)
. (5)

Our work uses the stable-baselines3 [31] implementation of
TQC, which led to the best and most reproducible results.
During expert policy training, we randomly selected the
physical parameters of the environment and added noise to
the proprioceptive information.

3) Student Policy: Building upon the pre-trained VAE
network, we use a four-layer GRU (Gate Recurrent Unit)
and a mixture density layer as the student policy network.
The network models a probability density function (PDF)
p(as|x) as a mixture of m PDFs with the mixing coefficient
∏ = {α0,α1, ...,αm−1} by the following equation:

p(as|x) =
m−1

∑
i=0

αiφi(as(k)|x) (6)

where φi(as|x) is a kernel function in the form of a mul-
tivariate Gaussian distribution with parameters {µi,σi}, as



Fig. 4. The privileged learning approach. Firstly, we train an expert decision network through reinforcement learning using complete observational
information. Then, we train a student policy based on the Proprioception information, which considers the historical information of observations during
training to deal with the POMDP.

represents the output action of student policy that should be
taken, and x is the observation sequence o(k−(T −1)),o(k−
(T −2)), ...,o(k). The student action as will be generated by
sampling from p(as|x).

The student policy πs is optimized using the NLL (Neg-
ative Log-Likelihood) loss function. The NLL loss function
will maximize the likelihood of the sequence of observations
x under the action label ae given by the expert:

LNLL =− log

(
m−1

∑
i=0

αiφi(ae(k)|x)

)
. (7)

In this work, the DAGGER method [32] is employed,
where the dataset is continuously aggregated with the in-
coming data from the training rollouts of the student policy.
Labels are obtained by querying the expert policy for the
visited states. At each training iteration, the student policy
is updated by performing an optimization step with batches
sampled from the aggregated dataset.

IV. EXPERIMENTS

A. System and robot setup

1) Sensors: The set of hardware systems consists of four
components: a custom-made tactile sensor, one 6DoF robotic
arm, an external camera that is only used during testing
phases, and a computer system for processing. To facilitate
comparative experiments, we conducted trials using two
distinct robotic arms, each equipped with one of the two
different tactile sensors. Our two experimental setups are
shown in Fig. 5.

We adapted optical tactile sensors, Tactip and Insight, to
create affordable variants named W-Tactip (Fig. 5(b)) and
R-Insight (Fig. 5(a)). The W-Tactip is a low-cost device
which includes a two-layer soft gel tip, a micro-camera with
LEDs, and 3D-printed connectors. The W-Tactip’s internal
micro-camera and LED capture images for binarized data
emphasizing internal textures during contact. The R-Insight
uses grayscale processing for precise texture analysis. Both
sensors capture image data using cameras and LEDs. In the
simulations, we use the Tactip simulations from Tactile-gym.

(a) The robotic arm and R-Insight sensor system.

(b) The robotic arm and W-Tactip sensor system.

Fig. 5. Two sets of robotic arm-tactile sensor systems. These two systems
are identical in all aspects except for the tactile sensors, and external cameras
are not involved in the decision-making process of the tactile control policy.

The images from these tactile sensors are then mapped to a
common simulation latent space.

2) Robotic Arm: In our experiments, we selected the 6-
DOF Jaka and UR5 robotic arms. We adjusted the movement
speeds of these two robotic arms to match the motion speeds
in the simulation environment.

3) Computer System: Our computer system uses PyBullet
and GPU rendering to provide fast simulation. The training
process was conducted on a single Nvidia RTX 3060 Ti GPU
in the simulation environment.

B. Simulations

Our experiments are divided into training and testing on
two distinct tasks: the push task for goal-driven nonprehen-
sile manipulation and the surface-following task for non-
target-driven exploration. The push task involves pushing an
object along a trajectory generated by OpenSimplex noise.
Each trajectory has ten target points that are 3cm apart. The



TABLE I
RESULTS OF SIM-TO-REAL.

phase SSIM(Reconstruction) SSIM(Real2Sim) MAE(Reconstruction) MAE(Real2Sim)
W-tactip(TLSM) 0.844 0.934 0.0246 0.0101
R-Insight(TLSM) 0.828 0.922 0.0048 0.0168

W-tactip(Unsupervised) 0.687 0.866 0.0449 0.0610
R-Insight(Unsupervised) 0.770 0.892 0.0064 0.0357

experiment includes flat and curved paths, with randomized
initial object orientations ranging from −15◦ to 15◦. In the
surface-following task, the tactile sensor maintains a vertical
attitude while moving forward along a 3D contact surface
generated using openSimplex noise.

Our approach involves privileged learning once for each
task, training both expert and student policies. In real en-
vironment testing, we vary physical parameters like object
mass, initial orientation, and shapes to assess policy ro-
bustness. For training, the student policy uses 1,000 sets
of trajectory sequences with expert action labels. After the
imitation learning process, we evaluate expert and student
policies using reinforcement learning metrics. The results
from extensive testing are summarized as follows. The me-
dian rewards of expert policy for push and surface-following
are −54.55 and −0.92, while the median rewards of student
policy for push and surface-following are −63.25 and −1.31.

C. Sim-to-real Results

(a) The transfer result of W-Tactip.

(b) The transfer result of R-Insight.

Fig. 6. The images provided by R-Insight and W-Tactip are translated into
the same type of simulated tactile images. Real tactile images (top), ground
truth (middle), and transfer results (bottom). The grayscaling tactile images
from the R-Insight (b), and the binary tactile images from the W-Tactip (a).

In the experiment, we initially set a baseline with the
data scale of [1], [33], comprising 5,000 unpaired im-
ages. Subsequently, we progressively reduced the data scale
while ensuring the feasibility of subsequent experiments.
Ultimately, we opted for 2,000 unpaired images for self-
supervised pretraining. Additionally, 200 images paired with
simulated data for the push task and 800 paired images for

the surface task were used for TLSM training. For each type
of tactile sensor, our entire data collection process takes less
than 10 minutes.

We referenced the cycle-consistency based method [34] for
unsupervised image translation and conducted comparative
experiments while ensuring the parameters of the encoding
models are kept the same. In addition, we also used two
different tactile sensors with binary features and grey scale
features for comparison experiments. The performance of
representation learning and TLSM was evaluated using the
SSIM (Structural Similarity) and MAE (Mean Absolute
Error) between the reconstructed images and ground truth.
Given that the learning rate (0.001), iteration count (1,000)
for each model, batch size (128), and other hyperparame-
ters are kept consistent, the domain transfer results of two
different sensors are shown in Fig. 6 and Table I.

The results demonstrate that the introduction of supervised
data significantly improves the quality of image generation,
indicating that the model has learned more accurate features.
Tactile grey-scale features can be more accurately mapped
to the latent space of simulation, whereas tactile binary
features have a greater loss of information. Additionally, we
observed that unsupervised methods on binary images may
lead to correspondences of opposite directions, resulting in
significant biases.

D. Real-world Manipulation Tasks

In our experiments, we investigated the robustness of our
policy and compared it with other methods. We selected two
methods for comparison. We designed the first method by
referencing [18], [33] and call it TRL (Tactile Reinforcement
Learning). The first method involves replacing the RNN
structure of the student network with an MLP structure,
directly trained through RL, as an ablation experiment that
does not consider temporal features.

The second method involves training a posenet-based
angle predictor using tactile images and contact angle data,
with a network structure similar to the latent space encoder.
The output includes the contact depth denoted as d, the
contact angle in the horizontal plane denoted as θx and the
contact angle in the vertical plane denoted as θy. Then, based
on [24], we designed a PID controller to control the tactile
system using the predicted contact angle and the relative
angles and positions of the object and the target. We refer
to this method as PN-PID (PoseNet-PID).

1) Push Tasks: To evaluate the performance of push
tasks, we tracked the objects following the method given
in Tactile-Gym. Importantly, the ArUco markers were only



(a) Simulation

(b) R-Insight Origin

(c) Mass changed (+100g)

(d) Shape change

(e) Sensor change (W-Tactip)

Fig. 7. An example of the results for pushing student policy under random
physical parameters.

used for obtaining quantitative results and not as part of the
observation. For the two experimental setups, we ensured
the objects’ consistency and the working surfaces upon
which the objects were placed. The entire testing area is a
rectangular region with the initial TCP coordinates (0,0) as
the origin. The x-axis coordinate ranges from 0 to 400mm,
and the y-axis coordinate ranges from −100 to 100mm. In
our experiments, we tested the performance of policies based
on the same pre-trained transfer model and policy model
while varying the physical conditions. We segmented the
object’s movement trajectory and the target trajectory into
segments of equal length and calculated the positional error
between the object and target positions at these segment
points. The results of the robustness tests with different
physical parameters are displayed in Fig. 7.

Furthermore, we conducted ablation experiments and com-
parative studies using both TRL and PN-PID methods. Test-
ing was performed on approximately 50 randomly generated
trajectories in both simulated and real environments with
various sensors. We computed AE (Average error in mm)
and GCR (Goal Completion Rates) of the local goals in the
path, shown in Tab. II. AE greater than 30mm is indicated

by ”–”. According to the results, both the PN-PID method
and the TRL method face difficulties in adapting to self-made
sensor systems when transitioning from simulation to reality.
In contrast, our approach shows significant robustness and
portability. However, the soft rubber tip of our Wtactip sensor
lacks material toughness, which results in poor performance
across all methods. Nonetheless, our method still maintains
a high success rate.

TABLE II
AVERAGE ERROR IN POLICY TESTING UNDER RANDOM PATHS

Methods Real(AE) Real(GCR) Sim(AE)
RTTF (R-Insight) 11.67 1 8.56RTTF (W-Tactip) 23.68 0.80

PN-PID (R-Insight) 23.38 0.92 8.93PN-PID (W-Tactip) – 0.46
TRL (R-Insight) – 0.62 8.22TRL (W-Tactip) – 0.42

(a) Experiment example (b) Schematic diagram of the
experimental process

(c) Depth error (mm) of stu-
dent policy (Ours)

(d) Orientation error (cosine
dist) of student policy(Ours)

(e) Depth error (mm) of PN-PID
policy

(f) Orientation error (cosine dist)
of PN-PID policy

Fig. 8. The results of the student policy and PN-PID policy. The surface-
following experiments were conducted on object surfaces without prior
information.

2) Surface-following Tasks: To evaluate the performance
of surface-following tasks, a spherical object is traversed
from its center outwards in a set direction over 360◦ in
45◦ intervals. We employed a 3D-printed shape with known
ground truth from the CAD model and computed the error for
the surface-following task, considering the prescribed stan-
dard tactile contact depth (1mm) and the vertical angle (90◦)
to the surface. Remarkably, the sensor successfully traversed
the physical robot, even without texture and frictional forces
that were not replicated in the simulation.



The experimental results (Fig. 8) show that in the surface-
following task, the PN-PID method exhibits cumulative er-
rors when transferred to a real physical environment. In con-
trast, our approach dynamically adjusts to the current contact
state, achieving a more effective following performance.

V. CONCLUSION

This study proposes a framework called RTTF that ad-
dresses both the problem of tactile sim2real and tactile feed-
back control. In the sim2real problem, the semi-supervised
TLSM method reduces data dependency compared to su-
pervised methods while also improving mapping accuracy
compared to unsupervised methods. In the tactile feedback
control section, RTTF combines spatiotemporal features of
tactile signals, demonstrating robust adaptability across dif-
ferent tasks.

Real-world testing of our RTTF framework has shown
that it enables rapid policy transfer for comparable tactile
sensors with minimal paired data. It can quickly generate
task-specific policies in simulated settings using pre-trained
models with the same tactile sensor. Although our network
architecture may not be optimal, the ability to adjust hy-
perparameters and replace networks enhances tactile servo
control capabilities as required.
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