
TARS: Tactile Affordance in Robot Synesthesia for Dexterous
Manipulation

Qiwei Wu, Haidong Wang, Jiayu Zhou, Xiaogang Xiong, Yunjiang Lou

Abstract— In the field of dexterous robotic manipulation,
integrating visual and tactile modalities to inform manipula-
tion policies presents significant challenges, especially in non-
contact scenarios where reliance on tactile perception can be
inadequate. Visual affordance techniques currently offer effec-
tive manipulation-centric semantic priors focused on objects.
However, most existing research is limited to using camera
sensors and prior object information for affordance predic-
tion. In this study, we introduce a unified framework called
Tactile Affordance in Robot Synesthesia (TARS) for dexterous
manipulation that employs robotic synesthesia through a unified
point cloud representation. This framework harnesses the visuo-
tactile affordance of objects, effectively merging comprehensive
visual perception from external cameras with tactile feedback
from local optical tactile sensors to handle tasks involving both
contact and non-contact states. We simulated tactile perception
in a virtual environment and trained task-oriented manipula-
tion policies. Subsequently, we tested our approach on four dis-
tinct manipulation tasks, conducting extensive experiments to
evaluate how different modules within our method optimize the
performance of these manipulation policies. Our project page
is available at https://github.com/NathanWu7/VisualTactile.

I. INTRODUCTION
In the daily life of humans, we effortlessly combine

hand-eye coordination to perform precise manipulation. For
example, when we see an object, we grasp it with our hands.
If the object becomes obscured by our hand during the
grasp, we rely on tactile perception to sense the object’s
state. This synergy between visual and tactile feedback
grants us dexterous manipulation capabilities, essential for
shifting tasks from a coarse-grained to a fine-grained level.
For robots, however, naturally integrating visual and tactile
modalities to accomplish manipulation tasks remains a sig-
nificant challenge.

In the decision-making sequence of a manipulation task,
tactile feedback is not always available. During these inter-
vals, a robot can only rely on visual information to analyze
the environment. However, when the robot’s end-effector
interacts with an object, visual information may be partially
obscured, leading to the loss of critical data. The integration
of visual and tactile information is particularly crucial for
the precise manipulation of small objects. This dual reliance
introduces two critical challenges: (i) the manipulation policy
must effectively manage transitions between contact and non-
contact states, and (ii) the policy must seamlessly integrate
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information from the inherently different visual and tactile
modalities. Most existing research predominantly focuses
on visual-tactile coordination in contact-rich scenarios or
addresses visual and tactile information separately through
distinct modules in tasks with limited contact.

In this paper, we present TARS, a framework designed
to uniformly handle both contact and non-contact states
while integrating visual and tactile modalities. Drawing on
research in visual-tactile synesthesia and visual affordances,
we are the first to apply these concepts to a robotic system
using optical tactile sensors and external cameras. We devel-
oped a unified point cloud visual-tactile processing module
and a multi-state, multi-modal feature processing method
trained through visual-tactile affordances. Additionally, we
implemented a novel training-deployment framework based
on the widely used Teacher-Student reinforcement learning
framework for robotic tactile manipulation. Our framework
can infer tactile affordances from visual input alone and
supplement visual data with tactile information when avail-
able. This unified approach enables smooth transitions be-
tween contact and non-contact states, integrating visuo-tactile
modalities to accomplish various manipulation tasks.

In our study, we used a widely adopted setup comprising
of an external camera, a robotic arm, a two-finger parallel
gripper, and an optical-based tactile sensor, which is preva-
lent in both academia and industry settings. We designed
four manipulation tasks: Lift, Pick and Place, Pull Drawer,
and Open Door. To increase the complexity, we restricted
the completion of these tasks to the gripping actions of the
two tactile sensors, making them more difficult than tasks
without such restrictions. Additionally, unlike some studies
that provide prior shape information, we relied solely on
data from the external camera to emphasize generalization.
In our ablation experiments, we validated the effectiveness
of different modules within our framework and assessed its
robustness under various physical conditions. Furthermore,
we successfully conducted real-world experiments to demon-
strate the applicability of our approach.

The rest of this paper is organized as follows: Section II
presents related works, while the proposed TARS is detailed
in Section III. In Section IV, we compare TARS with exist-
ing approaches through different manipulation experiments.
Finally, Section V offers concluding remarks and outlines
future work.

II. RELATED WORK

1) Visual-Tactile Coordination in Robotic Manipulation:
Recently, various vision-based tactile sensors [1]–[3] have
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Fig. 1. TARS (Tactile Affordance in Robot Synesthesia) provides sufficient information for manipulation tasks in both contact and non-contact states and
under visuo-tactile multimodal conditions. We show different contact states during a grasping task.

been widely applied in robotic manipulation research, sig-
nificantly enhancing robotic dexterity by estimating object
shapes, positions, and contact forces in various tasks [4]–[8].
Conversely, external RGB-D cameras provide critical global
information but are prone to interference and occlusion.
Some studies [9]–[13] have achieved visual-tactile modality
fusion in contact-rich scenarios using sparse representations
and self-attention methods. However, the sparse nature of
tactile signals in many tasks limits these approaches’ ap-
plicability. In low-interaction scenarios, image-based studies
[14]–[17] have processed visual and tactile images sepa-
rately using event cameras or gating mechanisms. These
methods heavily rely on camera images when tactile signals
are sparse, increasing the Sim2Real challenge. Additionally,
research on visual-tactile coordination from a point cloud
perspective [18], [19] has primarily focused on dexterous
hands and force-tactile sensors, with limited exploration
in diverse scenarios. In contrast, TARS builds on point
cloud-based visual-tactile coordination methods to achieve a
natural integration of visual and tactile modalities in robotic
manipulation, as shown in Fig. 1. Our proposed framework
incorporates robotic arms, parallel grippers, cameras, and
optical tactile sensors. This framework facilitates seamless
transitions between different contact states, leveraging both
visual and tactile information to enhance robot performance,
representing a significant advancement over existing ap-
proaches.

2) Visual-Tactile Affordance: Affordance is essential for
robotic object manipulation, as it provides actionable infor-
mation about how an object can be interacted with by robots.
Several studies [20]–[23] have highlighted its effectiveness.
For example, in point cloud-based robotic manipulation,
[24] developed an end-to-end affordance method using re-
inforcement learning. Other works, such as [25]–[27], col-
lected interaction data to pre-train affordance models before
training manipulation policies based on these affordances.
These methods, however, often require sampling surface
point clouds from 3D CAD (Computer-Aided Design) mod-
els to obtain local contact points, relying on prior object

information, which can be cumbersome. To address this
issue, we conducted contact sampling on objects using both
simulated and real optical tactile sensors to obtain precise
local information. This approach simplifies the process of
acquiring local points, making the affordance acquisition
process independent of prior object information, thereby
enhancing flexibility and applicability in various scenarios.

3) Point Cloud Based Visual-Tactile Synesthesia: In
robotic manipulation research, some approaches [28], [29]
rely solely on visual point clouds to enhance policy robust-
ness, while others [30], [31] use tactile points to improve
local perception. Studies on estimating object states [6], [32]
often begin with a rough estimate using visual point clouds,
refining the estimation with tactile point clouds for greater
accuracy. This method encodes visual and tactile point clouds
into a coherent 3D space, a concept known as robotic synes-
thesia [18], which has demonstrated strong capabilities in
dexterous manipulation. However, these studies are generally
limited to contact-rich states or in-hand manipulations. As
shown in Fig. 2, our approach introduces visual-tactile synes-
thesia encoding based on optical tactile sensors, combined
with visual-tactile affordance features to create a unified
feature space. This method provides affordance perception
through visual-tactile synesthesia in non-contact states and
accurate visuo-tactile information in contact states, ensuring
smooth transitions between these states. This integration
enhances the continuity and effectiveness of manipulation
policies across different interaction scenarios.

III. OUR APPROACH

We set up a robotic simulation environment in Isaac Gym
and implemented tactile simulation using our method. Then,
we use the Soft Actor-Critic (SAC) [33], a reinforcement
learning algorithm, to train teacher policies for different tasks
in the simulation environment with oracle observation. These
policies are employed to train the Visual-Tactile Affordance
(VTA) and Visual-Tactile Policy (VTP) modules within
TARS. Finally, we deploy the trained VTA and VTP modules
to realize robotic manipulation tasks.



Fig. 2. The characteristics of TARS. For point cloud features, visual-tactile synesthesia uses visual and tactile one-hot classification encoding, while
visual affordance uses only affordance information. TARS’s mixed encoding unifies these features, ensuring that the point cloud has a continuous feature
distribution in any state, enabling unified decision-making.

A. Simulation of Tactile Point Cloud
The optical tactile sensor provides tactile information

through images. By calibrating and modeling the sensor, we
can extract simulated three-dimensional contact information
from the two-dimensional tactile image data. In our frame-
work, we decouple this tactile information by decomposing
the three-dimensional contact information into a planar con-
tact point and six-axis force information (Fig. 3).

The six-dimensional contact force can be obtained in
various ways through optical tactile sensors in real envi-
ronments [34]–[36]. Building on these methods, we use
tactile images from the real system as the input and em-
ploy a convolutional neural network (CNN) to predict six-
dimensional contact forces. These predicted forces are then
linearly adjusted to match the contact forces obtained in the
simulations. By comparing the tactile images with reference
images, we can obtain the planar contact points. In the real
system, these points can be mapped to a contact point cloud
through the calibration of the robotic arm’s coordinate system
with the camera’s coordinate system. For the simulation
environment, there are already many environments for tactile
simulation [37]–[39], we aim for parallel training of our
policy and choose Isaac Gym [40]. In our simulation, we
modeled the contact scenario of Gelsight Mini [2] with a
depth camera and force sensors to simulate contact states. To
represent visual and tactile data using a unified point cloud,
we randomly sampled the simulated tactile depth images to
obtain the contact point cloud.

B. Visual-Tactile Affordance
We propose a bootstrapping-based approach for end-to-

end key feature learning through iterative tactile interactions,
eliminating the need for prior CAD model point clouds. In
each step of every parallel environment, we set and save
a classification label, denoted to TAL (Tactile Affordance
Label). This label distinguishes between two categories of
tactile points: (1) Contact points: Detected by the tactile sen-
sor when in contact with the object. (2) Non-contact points:
Identified through a fusion of camera and tactile sensor data
when not in direct contact with the object. Subsequently, we
employ a unified default feature to fuse visual and tactile

Fig. 3. Tactile information decoupling. We decompose the three-
dimensional tactile information into planar binary contact points and six-axis
contact forces.

points and utilize this integrated representation as input to
the Visual-Tactile Affordance (VTA) module.

The VTA model uses the point cloud segmentation struc-
ture of PointNet++ [41] as the backbone network. After
outputting the multi-dimensional features of the embedding,
a few layers of MLP (Multilayer Perceptron) are used to
obtain the final one-dimensional feature. VTA’s input consists
of the coordinates of the points and a default feature value
of 1, and its output is a prediction value between 0 and 1,
denoted to TAP (Tactile Affordance Prediction). We calculate
the deviation between TAP and TAL, using this as the loss
function to optimize VTA. We use binary cross-entropy loss
as the loss function for the VTA module as follows:

LV TA =− 1
N

N

∑
i=1

[TAL log(TAP)+(1−TAL) log(1−TAP)] .

(1)

Once trained, owing to the VTA module’s input comprising
a fusion of visual and tactile points, it demonstrates the
capability to predict object affordances through the mixed
point cloud, both in the presence and absence of tactile
points. The specific process is shown in Alg. 1, where the
number of contact environments is uncertain, implying that
the number of elements of the set K is also uncertain.



Fig. 4. Training Pipeline. Our teacher policy takes robot proprioception, binary contact, and object pose as input. After training the teacher policy
via RL, we distill it into a visual-tactile-based student policy. Besides robot proprioception and touch signal, the student policy takes point clouds from
depth-camera and tactile sensors. We used a joint encoding composed of visual-tactile synesthetic classification one-hot encoding and affordance encoding
as the feature for each point.

Therefore, we established a buffer and updated it in batches
of a certain size to ensure the stable convergence of the VTA
model.

Algorithm 1 VTA Learning.
Require: E1,2,...,n: the n parallel environments, TCi: the

tactile point cloud for environment Ei, VCi: the visual
point cloud for environment Ei, π: Trained RL policy,
K: a set of the index of environments in which contact
occurs.

Ensure: θo: The initial parameters of VTA
1: repeat
2: VC1,2,...,n,TC1,2,...,n← getPointcloud(E1,2,...,n);
3: K← getIndex(TC1,2,...,n); ▷ In which environments

contact occurred
4: TAL← getTactileA f f ordanceLabel(TCK ,VCK); ▷

Label contact points and non-contact points
5: VC′K ← SampleVisualPoints(VCK); ▷ Adjust Input

shape
6: TAP← predictA f f ordance(V TA,VC′K ,TCK)
7: θ ′← update(θ ,TAL,TAP);
8: E ′1,2,...,n← RL(E1,2,...,n); ▷ Update environments

using RL policy π

9: until convergence and return optimal θ ∗

C. Visual-Tactile Policy
With the privileged information provided by the simulation

environment, such as the position and pose of target objects,

we can quickly obtain stable reinforcement learning policies
through the parallelized simulation environment. However,
this privileged information cannot be directly accessed in
actual POMDP (Partially Observable Markov Decision Pro-
cess) robotic systems. Therefore, we use a teacher-student
learning approach to distill policies that can be applied in
real-world environments from the trained models. The VTP
(Visual-Tactile Policy) framework is illustrated in Fig. 4.

We use the affordance trained by VTA and the visual-
tactile one-hot classification encoding together as point fea-
tures, which ensures that our feature space is smooth. The
point features have three dimensions: the first dimension
is the affordance prediction ranging from 0 to 1, and the
second and third dimensions represent the tactile and visual
classification information. We will validate the roles of these
features in Sec. IV-C.

Through an encoder of PointNet, we can encode the
coordinates and feature information of the point cloud into
a feature vector. The student policy also employs a MLP
as the decision network and we add a fully connected layer
to output a Gaussian mixture density. We utilize a Gaussian
Mixture Density Model (GMDM) to handle scenarios where
multiple paths are planned for the same task by teacher
policies. The final strategy samples one feasible path from
the mixture density model. The loss function for the VTP
module is shown as follows:

Lvt p =− log

(
m−1

∑
i=0

αiφi(at |x)

)
, (2)



where φi(at |x) is a kernel function in the form of a mul-
tivariate Gaussian distribution with parameters {µi,σi}, at

represents the output action of teacher policy that should
be taken, and x is the observation. The loss function (2)
simultaneously trains the PointNet encoder network and the
MLP policy network. The network models a probability
density function (PDF) p(as|x) as a mixture of m PDFs with
the mixing coefficient ∏ = {α0,α1, ...,αm−1}. The student
action as will be generated by sampling from p(as|x).

A parallelized teacher-student framework is then estab-
lished for model training, incorporating our improvements.
The VTP uses the policy trained by SAC as the teacher
policy, while the DAgger [42] method mixes the decisions of
the teacher and student policies. Additionally, a replay buffer
was leveraged to utilize the data, continuously supplemented
with new data through the parallelized environment of the
Isaac Gym.

In summary, our work establishes the synergistic using
vision and touch during manipulation processes. The pipeline
of our framework is illustrated in Fig. 4, where our TARS
framework comprises two key components: the VTA mod-
ule, which provides affordance information, and the VTP
module, which makes decisions using mixed encoding. An-
other significant aspect is our decoupling of tactile modality
information to mitigate the transfer difficulty of the optical
tactile sensor in sim-to-real scenarios. We decompose the
tactile information provided by the optical tactile sensor into
contact shape and contact force, and implement this method
to achieve tactile perception in the simulation environment.
This tactile decoupling approach enables the deployment of
the VTA and VTP modules on real-world robotic systems.

IV. EXPERIMENTS

The subsequent section evaluates TARS’s performance in
comparison to baselines and other variants in simulations. We
focus on three key research questions: (1) How do visual-
tactile classification encoding and visual-tactile affordance
contribute to policy performance? (2) How does the tactile
point cloud influence grasping decisions? (3) Is our policy
robust? These questions will be addressed in the following
experiments.

A. Experimental Setup and Tasks Description

We evaluate our proposed method and comparison meth-
ods in the Isaac Gym physics simulator. In the simulation
environment, we uniformly use the UR5 robotic arm and the
Gelsight Mini tactile sensor simulation. We set the number
of input points to 8192, including 128 tactile sampling points
from two sensors in total, and tested this configuration across
the four tasks. Additionally, we performed 4× point cloud
downsampling, denoted as DS, and directly tested it on some
tasks without altering the policy model.

We selected single-stage tasks such as Lift Objects, Pull
Drawer, and Open Door, as shown in Fig. 5. We guided
the tasks through rewards to use the tactile sensors on the
two-finger gripper to complete these tasks. Here is a brief
introduction to these tasks:

Lift Objects: There are irregular objects on the table with
random initial positions and orientations. The agent needs to
locate the object and identify its key parts, then use the tactile
sensors to lift the object.

Open Door: In the initial state, the door is closed. The
agent needs to use the two tactile sensors on the parallel
gripper to grasp the door handle and open the door to a
specific angle. This task requires the agent to observe key
positions of the door and achieve the task with a specific
posture, making it very challenging.

Pull Drawer: A drawer is initially closed, similar to open
door, the agent needs to use the two tactile sensors on the
parallel gripper to open the drawer to a specific distance.

We also selected the multi-stage Pick and Place task for
evaluation, as shown in Fig. 5:

Pick and Place: An object with a random position and
orientation is on the table. The agent needs to use tactile
sensors to pick it up and place it at a target point on a
separate, higher table.

All the tasks mentioned above were trained using rein-
forcement learning with the oracle observation, resulting in
high-success-rate teacher policies.

B. Compared Methods

1) Baselines and Ablations: We compared our TARS with
three main baselines. Our first baseline RS (Robot Synesthe-
sia) refers to the SOTA (State of the Art) approach in [18],
[19], where we use only the visual and tactile classification
one-hot encoding for the features of the visual and tactile
point clouds. In the second baseline VA (Visual Affordance),
we did not use classification encoding for the visual and
tactile point clouds; instead, we treat them uniformly as
visual encoding and add our VTA module for prediction,
referring to [24], [26]. In the third baseline PN+MLP (Point-
Net+Multilayer Perceptron), we retained only the positional
features of the visual and tactile point clouds, setting other
features to a uniform value [29]. The results of this approach
will be further discussed in section IV-C. Additionally,
following the approach in [24], we considered an end-to-end
training method, where the policy network and the affordance
network are trained simultaneously through the technique of
reinforcement learning. However, we were unable to achieve
successful convergence, so these results were not included
in the comparisons.

2) Variants: We evaluated several variants of our model.
For our method, we also tested its robustness under different
settings. First, we examined whether the combined visual-
tactile perception maintained robustness with point clouds
of varying scales. In the Lift task, we tested the applicability
of the policy trained on the Lightbulb object directly on
other objects without modification. We also compared the
impact of three different encoding inputs on the policy:
our proposed TARS, the visual-tactile direct concatenation
PN+MLP, and the PN+MLP without the tactile perception
component. Additionally, we investigated the performance
of policies based on different modalities during the training
process of multi-stage pick and place tasks. This was done



Fig. 5. Simulations. For each task, top: the simulation task scenario transitions from a non-contact state to a contact state with the object, bottom: The
affordance transitions from a non-contact state to a contact state with the object.

to validate the impact and contribution of our visual-tactile
method on policy effectiveness.

C. Simulation Results
1) Comparisons to Baselines: The comparison results, as

shown in Tab. I, demonstrate that our method, which com-
bines visuo-tactile classification encoding and visual affor-
dance, achieves the best overall performance after extensive
testing. In tasks involving rich contact, the RS method based
on visuo-tactile classification encoding shows a significant
improvement over the PN+MLP method. Similarly, in tasks
with numerous non-contact states, the VA method based on
visual affordance also demonstrates substantial improvement
compared to the PN+MLP method. However, since non-
contact scenarios are less frequent, the enhancement provided
by VA is not as pronounced as that of RS. Additionally, our
method shows its robustness to point cloud inputs of varying
scales, indicating that the VTA module effectively learns the
key tactile features of objects, enabling the policy to utilize
this information effectively.

2) Variants: In the Lift task, we conducted direct tests
without replacing the policy model. We selected six test
objects out of twenty that were somewhat similar to the
training object. We also used a visual point cloud policy as a
baseline and evaluated the impact of removing the simulated

tactile point cloud from the policy. The results, shown in
Tab. II, indicate that our policy has strong generalization
ability and that the local tactile perception significantly
enhances the policy’s performance. Among the test objects,
the Apple produced anomalous results, likely due to its
larger volume affecting the gripping policy across all three
methods.

In addition to evaluating the performance of the policy
upon completion of the task training, we also measured
the policy’s performance at different training steps and
recorded the results in Tab. III. The results indicate that
during training, policies based solely on visual modality
showed limited improvement after reaching a certain success
rate. In contrast, visual affordance and tactile information
were effective at different stages of training, with visual
information aiding in the early stages and tactile information
contributing in the later stages. This synergy resulted in our
visual-tactile method achieving the best performance.

D. Real-World Transfer

We constructed a digital twin [43] system in both simu-
lation and real-world environments. We selected a robotic
system composed of a UR5 robotic arm, a DaHuan PGI
model parallel gripper, and a Gelsight Mini tactile sensor,



TABLE I
OUR METHOD DEMONSTRATED GOOD PERFORMANCE ACROSS DIFFERENT TASKS.

Model Lift Pull Drawer Pick and Place Open Door Lift(DS) Pull Drawer(DS)

RL Teacher 0.989 1.0 0.802 0.953 0.989 1.0

TARS(Ours) 0.783 0.954 0.426 0.248 0.697 0.556
RS 0.692 0.936 0.403 0.138 0.494 0.534
VA 0.602 0.778 0.271 0.014 0.321 0.279
PN+MLP 0.685 0.127 0.302 0.003 0.665 0.011

TABLE II
OUR METHOD DEMONSTRATES GOOD GENERALIZATION CAPABILITIES.

Model(Lift Task) Lightbulb Banana Mouse Apple Rabbit Telescope Elephant

TARS(Ours) 0.783 0.301 0.261 0.411 0.340 0.212 0.318
PN+MLP 0.685 0.272 0.243 0.467 0.335 0.201 0.262
PN+MLP(Camera Only) 0.626 0.261 0.18 0.471 0.218 0.177 0.243

Fig. 6. Real-world deployment. From the left, the first image and third image: initial position of the robotic arm. The second image: Lift Object and
Pick and Place tasks. The fourth and fifth images: Pull Drawer and Open Door tasks.

TABLE III
THE PERFORMANCE OF DIFFERENT ALGORITHMS IN THE

PICK-AND-PLACE TASK AT DIFFERENT TRAINING STEPS.

Epochs TARS(Ours) RS PN+MLP VA

20k 0.173 0.023 0.007 0.093
40k 0.302 0.190 0.278 0.175
60k 0.346 0.163 0.263 0.269
80k 0.370 0.292 0.370 0.267
100k 0.426 0.403 0.346 0.271

ensuring consistency between the robot’s movements in both
simulation and real-world scenarios. To minimize discrep-
ancies between the simulation and real-world environments,
we applied linear mappings to the object positions in the real
system relative to those in the simulated system.

In our real-world experiments, our inputs were divided into
two folds: point clouds from the simulator and propriocep-
tive feedback from the real-world robot. we used hand-eye
calibration to transform both the tactile sensor point cloud
and the camera point cloud into the robotic arm coordinate
system, consistent with the simulation cases. The action
policy was primarily executed based on the policy obtained
from the simulator. Additionally, for real-world scenarios, we
imposed some simple constraints on the actions to ensure
the safety of the sensors, robotic arm, and objects. The

experimental setup is illustrated in Fig. 6. Our trained policy
model successfully completed tasks in real-world scenarios.

V. CONCLUSION

We proposed the TARS framework, leveraging visual-
tactile synesthesia to provide continuous tactile affordance
distribution in the absence of tactile signals and enhance
contact information when tactile signals are present. This
framework simplifies training by enabling the direct acqui-
sition of visual-tactile affordance from the camera without
prior object knowledge. Through mixed encoding, it ensures
a smooth transition between contact and non-contact states
by maintaining a continuous distribution of visual-tactile
point cloud features.

Our experiments demonstrate that the TARS framework
outperforms baseline methods on visual-tactile point clouds,
tested with a robotic arm, parallel gripper, and optical tactile
sensor system. The approach shows superior performance
across different tasks, and ablation experiments validate the
effectiveness of its various modules. Additionally, our pol-
icy exhibits better generalization compared to baselines, as
evidenced by experiments involving downsampling, removal
of local tactile point clouds, and substitution with different
objects. We will continue to enhance our real-world policy
transfer experiments and expand our simulation framework
to support a wider range of sensors and robotic systems.
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